Monday, 16 July 2018

Fator de alisamento médio em movimento


Previsão por Técnicas de Suavização Este site é uma parte dos objetos de aprendizado de E-Labs JavaScript para a tomada de decisões. Outro JavaScript nesta série é categorizado em diferentes áreas de aplicações na seção MENU nesta página. Uma série temporal é uma sequência de observações que são ordenadas a tempo. Inerente à coleta de dados obtidos ao longo do tempo é alguma forma de variação aleatória. Existem métodos para reduzir o cancelamento do efeito devido a variação aleatória. As técnicas amplamente utilizadas são o alisamento. Essas técnicas, quando aplicadas corretamente, revelam mais claramente as tendências subjacentes. Digite as séries temporais em ordem de linha em sequência, a partir do canto superior esquerdo e o (s) parâmetro (s), e clique no botão Calcular para obter uma previsão em um período de antecedência. As caixas em branco não estão incluídas nos cálculos, mas os zeros são. Ao inserir seus dados para mover de célula para célula na matriz de dados, use a tecla Tab, sem seta ou digite as chaves. Características das séries temporais, que podem ser reveladas examinando seu gráfico. Com os valores previstos e o comportamento dos resíduos, modelagem de previsão de condições. Médias móveis: as médias médias classificam as técnicas mais populares para o pré-processamento de séries temporais. Eles são usados ​​para filtrar o ruído branco aleatório dos dados, para tornar as séries temporais mais suaves ou mesmo para enfatizar certos componentes informativos contidos nas séries temporais. Suavização exponencial: Este é um esquema muito popular para produzir uma série de tempo suavizada. Considerando que, nas Médias móveis, as observações passadas são ponderadas de forma igual, Suavização exponencial atribui pesos exponencialmente decrescentes à medida que a observação envelhece. Em outras palavras, as observações recentes recebem relativamente mais peso na previsão do que as observações mais antigas. O Suavizado Exponencial Duplo é melhor nas tendências de manuseio. O Triple Exponential Suavização é melhor no manuseio de tendências da parábola. Uma média móvel ponderada exponencialmente com uma constante de suavização a. Corresponde aproximadamente a uma média móvel simples de comprimento (isto é, período) n, onde a e n estão relacionados por: a 2 (n1) OR n (2 - a) a. Assim, por exemplo, uma média móvel ponderada exponencialmente com uma constante de suavização igual a 0,1 corresponderia aproximadamente a uma média móvel de 19 dias. E uma média móvel simples de 40 dias corresponderia aproximadamente a uma média móvel ponderada exponencialmente com uma constante de suavização igual a 0,04878. Holst Linear Exponential Suavização: Suponha que as séries temporais não sejam sazonais, mas que mostram a tendência de exibição. O método Holts estima tanto o nível atual como a atual tendência. Observe que a média móvel simples é um caso especial do alisamento exponencial, definindo o período da média móvel para a parte inteira de (2-Alpha) Alpha. Para a maioria dos dados de negócios, um parâmetro Alpha menor que 0.40 geralmente é efetivo. No entanto, pode-se realizar uma pesquisa em grade do espaço dos parâmetros, com 0,1 a 0,9, com incrementos de 0,1. Então, o melhor alfa tem o menor erro absoluto médio (erro MA). Como comparar vários métodos de suavização: embora existam indicadores numéricos para avaliar a precisão da técnica de previsão, a abordagem mais ampla é o uso de comparação visual de várias previsões para avaliar sua precisão e escolher entre os vários métodos de previsão. Nesta abordagem, é necessário traçar (usando, por exemplo, Excel), no mesmo gráfico, os valores originais de uma variável de séries temporais e os valores previstos de vários métodos de previsão diferentes, facilitando assim uma comparação visual. Você pode gostar de usar as previsões passadas por Smoothing Techniques JavaScript para obter os valores de previsão passados ​​com base em técnicas de suavização que usam apenas um único parâmetro. Os métodos Holt e Winters usam dois e três parâmetros, respectivamente, portanto, não é uma tarefa fácil selecionar os valores ideais ótimos, ou mesmo próximos, por testes e erros para os parâmetros. O alisamento exponencial único enfatiza a perspectiva de curto alcance, ele define o nível para a última observação e baseia-se na condição de que não há nenhuma tendência. A regressão linear, que se adapta a uma linha de mínimos quadrados aos dados históricos (ou dados históricos transformados), representa o longo alcance, que está condicionado à tendência básica. Holder linear exponencial suavização capta informações sobre a tendência recente. Os parâmetros no modelo Holts são níveis-parâmetro que devem ser diminuídos quando a quantidade de variação de dados é grande e as tendências-parâmetro devem ser aumentadas se a direção da tendência recente for suportada pelos fatores causais. Previsão de curto prazo: observe que cada JavaScript nesta página fornece uma previsão de um passo a frente. Para obter uma previsão de duas etapas. Simplesmente adicione o valor previsto para o final de seus dados da série temporal e clique no mesmo botão Calcular. Você pode repetir este processo por algumas vezes para obter as previsões de curto prazo necessárias. Vazões simples. Médias móveis exponentes As médias móveis são mais do que o estudo de uma sequência de números na ordem sucessiva. Os primeiros praticantes da análise de séries temporais estavam realmente mais preocupados com os números das séries temporais individuais do que com a interpolação desses dados. Interpolação. Sob a forma de teorias e análises de probabilidade, vieram muito mais tarde, à medida que os padrões foram desenvolvidos e as correlações descobertas. Uma vez entendida, várias curvas e linhas moldadas foram desenhadas ao longo da série temporal em uma tentativa de prever onde os pontos de dados podem ir. Estes são agora considerados métodos básicos atualmente utilizados pelos comerciantes de análise técnica. A análise de gráficos pode ser rastreada até o Japão do século 18, no entanto, como e quando as médias móveis foram aplicadas pela primeira vez para os preços de mercado, continua sendo um mistério. Em geral, entende-se que as médias móveis simples (SMA) foram usadas muito antes das médias móveis exponenciais (EMA), porque as EMAs são construídas na estrutura SMA e o contínuo SMA foi mais facilmente compreendido para fins de traçado e rastreamento. (Você gostaria de um pouco de fundo de leitura) Verificando as médias móveis: o que são) Média móvel simples (SMA) As médias móveis simples se tornaram o método preferido para rastrear os preços do mercado porque são rápidos em calcular e fácil de entender. Os praticantes do mercado precoce operaram sem o uso das métricas de gráfico sofisticadas em uso hoje, então eles dependeram principalmente dos preços do mercado como seus únicos guias. Eles calcularam os preços do mercado à mão, e representaram esses preços para denotar tendências e direção do mercado. Este processo foi bastante tedioso, mas provou ser bastante lucrativo com a confirmação de novos estudos. Para calcular uma média móvel simples de 10 dias, basta adicionar os preços de fechamento dos últimos 10 dias e dividir por 10. A média móvel de 20 dias é calculada adicionando os preços de fechamento ao longo de um período de 20 dias e dividindo em 20, e em breve. Esta fórmula não é apenas baseada em preços de fechamento, mas o produto é um meio de preços - um subconjunto. As médias móveis são denominadas em movimento porque o grupo de preços utilizado no cálculo se move de acordo com o ponto do gráfico. Isso significa que os dias antigos são descartados a favor de novos dias de fechamento, portanto, um novo cálculo sempre é necessário, correspondente ao prazo da média empregada. Assim, uma média de 10 dias é recalculada adicionando o novo dia e caindo no 10º dia e o nono dia é descartado no segundo dia. (Para obter mais informações sobre como os gráficos são usados ​​na negociação de divisas, consulte o nosso Passo a passo básico do gráfico.) Média móvel exponencial (EMA) A média móvel exponencial foi refinada e mais comumente usada desde a década de 1960, graças a experimentos de praticantes anteriores com o computador. A nova EMA se concentraria mais nos preços mais recentes do que em uma longa série de pontos de dados, como a média móvel simples exigida. EMA atual ((Preço (atual) - EMA anterior)) X multiplicador) EMA anterior. O fator mais importante é a constante de suavização que 2 (1N) onde N é o número de dias. Um EMA 2 de 10 dias (101) 18,8 Isso significa que uma EMA de 10 períodos pesa o preço mais recente 18,8, um EMA 9,52 e EMA de 20 dias com um peso de 3,92 no dia mais recente. A EMA funciona ponderando a diferença entre o preço dos períodos atuais e o EMA anterior e adicionando o resultado ao EMA anterior. Quanto menor o período, mais peso se aplica ao preço mais recente. Linhas de montagem Por esses cálculos, os pontos são plotados, revelando uma linha apropriada. As linhas de montagem acima ou abaixo do preço de mercado significam que todas as médias móveis são indicadores de atraso. E são usados ​​principalmente para seguir as tendências. Eles não funcionam bem com os mercados de alcance e os períodos de congestionamento porque as linhas adequadas não indicam uma tendência devido à falta de altos maiores evidentes ou baixos baixos. Além disso, as linhas de ajuste tendem a permanecer constantes sem um toque de direção. Uma linha de montagem ascendente abaixo do mercado significa uma longa, enquanto uma linha apropriada de queda acima do mercado significa um curto. (Para obter um guia completo, leia nosso Tutorial de média móvel.) O objetivo de empregar uma média móvel simples é detectar e medir as tendências, suavizando os dados usando os meios de vários grupos de preços. Uma tendência é manchada e extrapolada em uma previsão. O pressuposto é que os movimentos da tendência anterior continuarão. Para a média móvel simples, uma tendência a longo prazo pode ser encontrada e seguida muito mais fácil do que uma EMA, com uma suposição razoável de que a linha de montagem será mais forte do que uma linha EMA devido ao maior foco nos preços médios. Um EMA é usado para capturar movimentos de tendência mais curtos, devido ao foco nos preços mais recentes. Por este método, uma EMA deve reduzir os atrasos na média móvel simples, de modo que a linha de montagem irá reduzir preços mais perto do que uma média móvel simples. O problema com a EMA é o seguinte: é propenso a quebras de preços, especialmente em mercados rápidos e períodos de volatilidade. O EMA funciona bem até que os preços rompem a linha de montagem. Durante os mercados de maior volatilidade, você poderia considerar aumentar a duração do termo médio móvel. Pode-se até mudar de um EMA para um SMA, uma vez que o SMA suaviza os dados muito melhor do que um EMA devido ao seu foco em meios de longo prazo. Indicadores de evolução da tendência Como indicadores de atraso, as médias móveis servem bem como suporte e linhas de resistência. Se os preços se reduzem abaixo de uma linha de ajuste de 10 dias em uma tendência ascendente, as chances são boas de que a tendência ascendente pode estar diminuindo, ou pelo menos o mercado pode estar se consolidando. Se os preços caírem acima de uma média móvel de 10 dias em uma tendência de baixa. A tendência pode estar diminuindo ou se consolidando. Nesses casos, empregue uma média móvel de 10 e 20 dias em conjunto e espere que a linha de 10 dias atravesse acima ou abaixo da linha de 20 dias. Isso determina a próxima direção de curto prazo para os preços. Para períodos de longo prazo, observe as médias móveis de 100 e 200 dias para direção de longo prazo. Por exemplo, usando as médias móveis de 100 e 200 dias, se a média móvel de 100 dias cruza abaixo da média de 200 dias, é chamada de cruz da morte. E é muito competitivo para os preços. Uma média móvel de 100 dias que atravessa acima de uma média móvel de 200 dias é chamada de cruz dourada. E é muito otimista para os preços. Não importa se um SMA ou um EMA é usado, porque ambos são indicadores de tendência. É apenas a curto prazo que a SMA tem ligeiros desvios de sua contraparte, a EMA. Conclusão As médias móveis são a base da análise de gráficos e séries temporais. As médias móveis simples e as médias móveis exponenciais mais complexas ajudam a visualizar a tendência ao suavizar os movimentos de preços. A análise técnica às vezes é referida como uma arte em vez de uma ciência, que leva anos para dominar. (Saiba mais no nosso Tutorial de Análise Técnica.) Métodos da Série de Tempo Os métodos das séries temporais são técnicas estatísticas que utilizam dados históricos acumulados ao longo de um período de tempo. Os métodos da série temporal suportam que o que ocorreu no passado continuará a ocorrer no futuro. Como sugere o nome da série temporal, esses métodos relacionam a previsão com apenas um fator - tempo. Eles incluem a média móvel, alisamento exponencial e linha de tendência linear e estão entre os métodos mais populares para previsão de curto alcance entre empresas de serviços e fabricação. Esses métodos assumem que os padrões ou tendências históricas identificáveis ​​ao longo do tempo se repetirão. Média móvel Uma previsão de séries temporais pode ser tão simples como usar a demanda no período atual para prever a demanda no próximo período. Isso às vezes é chamado de uma previsão ingênua ou intuitiva. 4 Por exemplo, se a demanda for de 100 unidades nesta semana, a previsão para as próximas semanas, a demanda é de 100 unidades, se a demanda for de 90 unidades, então a demanda da semana seguinte é de 90 unidades, e assim por diante. Este tipo de método de previsão não leva em consideração o comportamento da demanda histórica, ele depende apenas da demanda no período atual. Ele reage diretamente aos movimentos normais e aleatórios da demanda. O método de média móvel simples usa vários valores de demanda durante o passado recente para desenvolver uma previsão. Isso tende a atenuar, ou suavizar, os aumentos e diminuições aleatórias de uma previsão que usa apenas um período. A média móvel simples é útil para prever a demanda que é estável e não exibe nenhum comportamento de demanda pronunciado, como uma tendência ou padrão sazonal. As médias móveis são calculadas para períodos específicos, como três meses ou cinco meses, dependendo de quanto o antecessor deseja suavizar os dados da demanda. Quanto maior o período médio móvel, mais suave será. A fórmula para calcular a média móvel simples é a Computação de uma Média Móvel Simples O Instant Paper Clip Office Supply Company vende e entrega material de escritório para empresas, escolas e agências dentro de um raio de 50 milhas de seu armazém. O negócio de suprimentos de escritório é competitivo e a capacidade de entregar ordens prontamente é um fator para obter novos clientes e manter os antigos. (Os escritórios normalmente não efetuam pedidos quando são baixos os suprimentos, mas quando eles estão completamente esgotados. Como resultado, eles precisam de suas ordens imediatamente). O gerente da empresa quer estar certo de que drivers e veículos estão disponíveis para entregar ordens prontamente e Eles têm estoque adequado em estoque. Portanto, o gerente quer ser capaz de prever o número de pedidos que ocorrerão no próximo mês (ou seja, prever a demanda por entregas). A partir dos registros das ordens de entrega, a administração acumulou os seguintes dados nos últimos 10 meses, dos quais pretende calcular as médias móveis de 3 e 5 meses. Deixe-nos assumir que é o final de outubro. A previsão resultante da média móvel de 3 ou 5 meses é tipicamente para o próximo mês na seqüência, que neste caso é novembro. A média móvel é calculada a partir da demanda por pedidos para os 3 meses anteriores na seqüência de acordo com a seguinte fórmula: A média móvel de 5 meses é calculada a partir dos dados anteriores de demanda de 5 meses da seguinte forma: Os 3 e 5 meses As previsões médias móveis para todos os meses de dados da demanda são mostradas na tabela a seguir. Na verdade, apenas a previsão de novembro com base na demanda mensal mais recente seria usada pelo gerente. No entanto, as previsões anteriores para meses anteriores nos permitem comparar a previsão com a demanda real para ver quão preciso é o método de previsão - ou seja, o quão bem ele faz. Médias de três e cinco meses Ambas as previsões da média móvel na tabela acima tendem a suavizar a variabilidade que ocorre nos dados reais. Este efeito de suavização pode ser observado na figura a seguir em que as médias de 3 meses e 5 meses foram superpostas em um gráfico dos dados originais: a média móvel de 5 meses na figura anterior suaviza as flutuações em maior medida do que A média móvel de 3 meses. No entanto, a média de 3 meses reflete melhor os dados mais recentes disponíveis para o gerente de suprimentos de escritório. Em geral, as previsões que usam a média móvel de longo prazo são mais lentas para reagir às mudanças recentes na demanda do que as feitas com médias móveis de menor período. Os períodos extras de dados amortecem a velocidade com que a previsão responde. Estabelecer o número apropriado de períodos para usar em uma previsão média móvel geralmente requer alguma quantidade de experimentação de tentativa e erro. A desvantagem do método da média móvel é que ele não reage às variações que ocorrem por uma razão, como ciclos e efeitos sazonais. Os fatores que causam alterações são geralmente ignorados. É basicamente um método mecânico, que reflete os dados históricos de forma consistente. No entanto, o método da média móvel tem a vantagem de ser fácil de usar, rápido e relativamente barato. Em geral, esse método pode fornecer uma boa previsão para o curto prazo, mas não deve ser empurrado para o futuro. Média Variável Ponderada O método da média móvel pode ser ajustado para refletir mais adequadamente as flutuações nos dados. No método da média móvel ponderada, os pesos são atribuídos aos dados mais recentes de acordo com a seguinte fórmula: Os dados da demanda para PM Computer Services (mostrado na tabela para o Exemplo 10.3) parecem seguir uma tendência linear crescente. A empresa quer calcular uma linha de tendência linear para ver se ela é mais precisa do que o alívio exponencial e as previsões de suavização exponencial ajustadas desenvolvidas nos Exemplos 10.3 e 10.4. Os valores necessários para os cálculos de mínimos quadrados são os seguintes: usando esses valores, os parâmetros para a linha de tendência linear são calculados da seguinte forma: Portanto, a equação linear da linha de tendência é Para calcular uma previsão para o período 13, vamos x 13 na linear Linha de tendência: o gráfico a seguir mostra a linha de tendência linear em comparação com os dados reais. A linha de tendência parece refletir de perto os dados reais - ou seja, para ser um bom ajuste - e, portanto, seria um bom modelo de previsão para esse problema. No entanto, uma desvantagem da linha de tendência linear é que ela não se ajustará a uma mudança na tendência, pois os métodos de previsão de suavização exponencial serão, é assumido que todas as futuras previsões seguirão uma linha reta. Isso limita o uso desse método para um período de tempo mais curto em que você pode estar relativamente certo de que a tendência não mudará. Ajustes sazonais Um padrão sazonal é um aumento repetitivo e diminuição da demanda. Muitos itens de demanda exibem comportamento sazonal. As vendas de roupas seguem padrões sazonais anuais, com demanda por roupas quentes aumentando no outono e no inverno e diminuindo na primavera e no verão, à medida que a demanda por roupas mais frescas aumenta. A demanda por muitos itens de varejo, incluindo brinquedos, equipamentos esportivos, roupas, aparelhos eletrônicos, presuntos, perus, vinho e frutas, aumentam durante a temporada de férias. A demanda do cartão de felicitações aumenta em conjunto com dias especiais, como Dia dos Namorados e Dia das Mães. Padrões sazonais também podem ocorrer de forma mensal, semanal ou mesmo diária. Alguns restaurantes têm maior demanda na noite do que no almoço ou nos fins de semana em vez de dias úteis. O tráfego - daí as vendas - nos shoppings começa em sexta e sábado. Existem vários métodos para refletir padrões sazonais em uma previsão de séries temporais. Descreveremos um dos métodos mais simples usando um fator sazonal. Um fator sazonal é um valor numérico que é multiplicado pela previsão normal para obter uma previsão ajustada sazonalmente. Um método para desenvolver uma demanda por fatores sazonais é dividir a demanda por cada período sazonal pela demanda anual total, de acordo com a seguinte fórmula: Os fatores sazonais resultantes entre 0 e 1,0 são, de fato, a parcela da demanda anual total atribuída a Cada temporada. Esses fatores sazonais são multiplicados pela demanda prevista anual para produzir previsões ajustadas para cada estação. Computação de uma previsão com ajustes sazonais O Wishbone Farms cresce perus para vender para uma empresa de processamento de carne ao longo do ano. No entanto, a sua alta temporada é, obviamente, durante o quarto trimestre do ano, de outubro a dezembro. A Wishbone Farms experimentou a demanda por perus nos últimos três anos, mostrada na tabela a seguir: porque temos três anos de dados da demanda, podemos calcular os fatores sazonais dividindo a demanda trimestral total para os três anos pela demanda total em todos os três anos : Em seguida, queremos multiplicar a demanda prevista para o próximo ano, 2000, por cada um dos fatores sazonais para obter a demanda prevista para cada trimestre. Para isso, precisamos de uma previsão de demanda para 2000. Nesse caso, uma vez que os dados da demanda na tabela parecem exibir uma tendência geralmente crescente, calculamos uma linha de tendência linear para os três anos de dados na tabela para obter um impacto Estimativa de previsão: assim, a previsão para 2000 é 58.17, ou 58.170 perus. Ao usar esta previsão anual da demanda, as previsões corrigidas sazonalmente, SF i, para 2000 estão comparando essas previsões trimestrais com os valores reais da demanda na tabela, eles pareceriam relativamente boas estimativas de previsão, refletindo as variações sazonais nos dados e A tendência geral ascendente. 10-12. Como é o método da média móvel semelhante ao suavização exponencial 10-13. O efeito sobre o modelo de suavização exponencial aumentará a constante de suavização 10-14. Como o alisamento exponencial ajustado difere do alisamento exponencial 10-15. O que determina a escolha da constante de suavização para tendência em um modelo de suavização exponencial ajustado 10-16. Nos exemplos de capítulo para métodos de séries temporais, a previsão inicial sempre foi assumida como a demanda real no primeiro período. Sugerir outras formas em que a previsão inicial pode ser derivada no uso real. 10-17. Como o modelo de previsão da linha de tendência linear difere de um modelo de regressão linear para a previsão de 10-18. Dos modelos de séries temporais apresentados neste capítulo, incluindo a média móvel e média móvel ponderada, suavização exponencial e suavização exponencial ajustada, e linha de tendência linear, qual você considera o melhor Porquê 10 a 19. Quais vantagens o alinhamento exponencial ajustado tem sobre uma linha de tendência linear para a demanda prevista que exibe uma tendência 4 K. B. Kahn e J. T. Mentzer, Previsão em Mercados de Consumidores e Industriais, The Journal of Business Forecasting 14, no. 2 (verão de 1995): 21-28.

No comments:

Post a Comment